Strona główna » Liceum » Przedmioty ścisłe » Matematyka


Prpstopadłosć prostych i płaszczyzn



Poprzednia praca: Wojna Secesyjna - sciąga
Następna praca: Dialogi z Bachem



Treść: 1. Prostopadłość prostych w przestrzeni.
Proste prostopadłe na płaszczyźnie są to dwie przecinające się proste, z których każda jest osią symetrii drugiej z nich.
Proste o tej własności są też prostopadłe w przestrzeni. Rozszerzmy jednak pojęcie prostopadłości prostych w przestrzeni, obejmując nim proste skośne. Skorzystamy tu z pojęcia wektorów prostopadłych, które jest analogiczne na płaszczyźnie i w przestrzeni.
Rys. 1
Dwie proste nazywamy prostopadłymi wtedy, gdy
niezerowe wektory równoległe odpowiednio
do każdej z tych prostych są prostopadłe.
Przykład 1. Prosta równoległa do krawędzi bocznej prostopadłościanu jest prostopadła do każdej prostej równoległej do dowolnej krawędzi podstawy.
2. Prostopadłość prostej i płaszczyzny.
Rozważmy dwie płaszczyzny q i r, które przecinają się wzdłuż krawędzi k.
Przez punkt O krawędzi k poprowadźmy w płaszczyźnie q prostą a prostopadłą do prostej k, a w płaszczyźnie r - prostą b też prostopadłą do prostej k. Proste a i b przecinają się w punkcie O, więc wyznaczają płaszczyznę p. Prosta k jest zatem prostopadła do dwóch przecinających się prostych, zawartych w płaszczyźnie p.
Udowodnimy następujące twierdzenie:
Jeżeli prosta k jest prostopadła do dwóch przecinających się
prostych a i b, to prosta k jest prostopadła do każdej prostej,
zawartej w płaszczyźnie wyznaczonej przez proste a i b.
Dowód: Z definicji prostopadłości prostych wynika, że prosta k jest prostopadła do każdej prostej równoległej do prostej a lub b.
Wystarczy więc, gdy wykażemy, że prosta k jest prostopadła do trzeciej prostej, zawartej w płaszczyźnie p. i nierównoległej ani do prostej a, ani do b. Weźmy do rozważań prostą przechodzącą przez punkt O i oznaczmy ją przez c. (Rys. 2).
Rys. 2
Niech wektory OA, OB, OC i OK. będą wektorami odpowiednio równoległymi do prostych a, b, c i k.
Ponieważ punkty O, A, B i C należą do płaszczyzny p. i punkty A, B, O są niewspółliniowe, więc istnieją takie liczby x i y, że:
OC = x * OA + y * OB
Na podstawie własności iloczynu skalarnego wektorów będziemy mieli:
OK. ™ OC = (x * OA + y * OB) ™ OK. = x * (OK. ™ OA) + y * (OK. ™ OB)
Z założenia twierdzenia wektor OK. jest prostopadły do wektorów OA i OB, więc
OK. ™ OA = 0 i OK. ™ OB = 0
Stąd otrzymujemy:
OK. ™ OC = x * 0 + y * 0 = 0,
co oznacza, że wektor OK. jest prostopadły do wektora OC, czyli prosta k jest prostopadła do prostej c.
W ten sposób wykazaliśmy, że istnieje prosta, która jest prostopadła do każdej prostej, zawartej w płaszczyźnie; jest ona jednocześnie prostopadła do każdej prostej równoległej do płaszczyzny.
Prostą nazywamy prostopadłą do płaszczyzny wtedy, gdy jest prostopadła do każdej prostej zawartej w płaszczyźnie.
Wektor nazywamy prostopadłym do płaszczyzny wtedy, gdy jest równoległy do prostej prostopadłej do płaszczyzny.
...


Widzisz tylko część pracy, aby zobaczyć całość, musisz się zalogować.

Nie masz jeszcze u Nas konta? Na co czekasz? ZAREJESTRUJ SIĘ JUŻ TERAZ

Zapomniałeś hasła? Skorzystaj z formularza przypominającego hasło.


Czytano: 2144 , autor: pawlukewa , Ocena: 49.47

      Blip Śledzik Twitter Facebook Buzz Wykop

Inne podobne teksty do tytułu Prpstopadłosć prostych i płaszczyzn

Brak podobnych prac w bazie danych.

Losowe teksty z tej samej kategorii

Twierdzenie kotangensów
Zbiory
Powiązanie najsłynniejszych stałych czyli NAJPIĘKNIEJSZY WZÓR MATEMATYKI
Praca semestralna z matematyki
Testy-wyrazenia algebraiczne kl. I gim.
Wzory redukcyjne
Trójkąt Pascala (1)
Potęgi
Podstawowe elemnty kombinatoryki
Fraktale


Wasze komentarze

Brak komentarzy dla danej pracy.




Zmień kategorię:

Zobacz także:

Przedmioty ścisłe
Chemia Chemia
Fizyka Fizyka
Informatyka Informatyka
Matematyka Matematyka

A A A A - zmień wielkość czcionki


Oceń pracę:

Ocena pracy wynosi 49.47.

Informacje o pracy:

⇒Dodano: 2008-03-30 09:54:58
⇒Czytano: 2144
Autor: pawlukewa


Dodatkowe opcje:

Drukuj stronę
ZGŁOŚ NARUSZENIE
Wyślij znajomemu
Dodaj do ULUBIONYCH



Dodaj komentarz:

Tytuł:

Treść: